Modeling of voltage-gated ion channels Modeling of voltage-gated ion channels
نویسنده
چکیده
The recent determination of several crystal structures of voltage-gated ion channels has catalyzed computational efforts of studying these remarkable molecular machines that are able to conduct ions across biological membranes at extremely high rates without compromising the ion selectivity. Starting from the open crystal structures, we have studied the gating mechanism of these channels by molecular modeling techniques. Firstly, by applying a membrane potential, initial stages of the closing of the channel were captured, manifested in a secondary-structure change in the voltage-sensor. In a follow-up study, we found that the energetic cost of translocating this 310-helix was significantly lower than in the original conformation. Thirdly, collaborators of ours identified new molecular constraints for different states along the gating pathway. We used those to build new protein models that were evaluated by simulations. All these results point to a gating mechanism where the S4 helix undergoes a secondary structure transformation during gating. These simulations also provide information about how the protein interacts with the surrounding membrane. In particular, we found that lipid molecules close to the protein diffuse together with it, forming a large dynamic lipid-protein cluster. This has important consequences for the understanding of protein-membrane interactions and for the theories of lateral diffusion of membrane proteins. Further, simulations of the simple ion channel antiamoebin were performed where different molecular models of the channel were evaluated by calculating ion conduction rates, which were compared to experimentally measured values. One of the models had a conductance consistent with the experimental data and was proposed to represent the biological active state of the channel. Finally, the underlying methods for simulating molecular systems were probed by implementing the CHARMM force field into the GROMACS simulation package. The implementation was verified and specific GROMACS-features were combined with CHARMM and evaluated on long timescales. The CHARMM interaction potential was found to sample relevant protein conformations indifferently of the model of solvent used.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملDifferential effect of brief electrical stimulation on voltage-gated potassium channels.
Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of t...
متن کاملAntiepileptic Drug Targets: An Update on Ion Channels
Different mechanisms of action have been proposed to explain the effects of antiepi‐ leptic drugs (AEDs) including modulation of voltage‐dependent sodium calcium and potassium channels, enhancement of γ‐aminobutyric acid (GABA)‐mediated neuronal inhibition, and reduction in glutamate‐mediated excitatory transmission. Recent advances in understanding the physiology of ion channels and genetics b...
متن کاملFluorescence imaging of electrically stimulated cells.
Designing high-throughput screens for voltage-gated ion channels has been a tremendous challenge for the pharmaceutical industry because channel activity is dependent on the transmembrane voltage gradient, a stimulus unlike ligand binding to G-protein-coupled receptors or ligand-gated ion channels. To achieve an acceptable throughput, assays to screen for voltage-gated ion channel modulators th...
متن کاملDeep Insight Section
Ion channels are pore-forming proteins and their function is to facilitate the diffusion of ion across cell membranes by flow of ions down the electrochemical gradient. Voltage-gated ion channels are a class of transmembrane ion channels and are found throughout the body which allowed a rapid and coordinated depolarization in response to voltage change in excitable cells (Catterall, 2010). Rece...
متن کاملInternational Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels.
This summary article presents an overview of the molecular relationships among the voltage-gated sodium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. The complete Compendium, including data tables for each member of the sodium channel family can be found at .
متن کامل